

 ARL-TR-7411 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Transport Protocol
(Transmission Control Protocol/User Datagram
Protocol [TCP/UDP]) Analysis

by Kenneth D Renard and James R Adametz

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7411 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Transport Protocol
(Transmission Control Protocol/User Datagram
Protocol [TCP/UDP]) Analysis

by Kenneth D Renard
Computational and Information Sciences Directorate, ARL

James R Adametz
QED Systems, LLC, Aberdeen, MD

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 July 2012–31 December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: Transport Protocol (Transmission Control
Protocol/User Datagram Protocol [TCP/UDP]) Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kenneth D Renard and James R Adametz
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7411

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the measurement, reduction, and basic analysis of transport layer protocol (transmission control protocol
and user datagram protocol) data collected from large-scale tactical radio network tests. The large volume of data collected
necessitates using distributed processing on high-performance-computing (HPC) clusters to reduce and analyze data in a
timely fashion. Traditional methods using database ingest and queries on high-end servers cannot handle the increasing scale
of current datasets, and processing times are estimated to be on the order of days versus hours using HPC. The requirement for
the use of HPC was anticipated, and efforts to develop this capability resulted in a highly capable process that is expected to
handle future large-scale tactical network testing.

15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Kenneth D Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Motivation and Desired Data Products 1

3. TCP Sessions 2

4. TCP Flows 4

5. UDP 5

6. Identification and Partitioning of TCP Packets for Processing 5

7. TCP Processing Considerations 7

7.1 Data Volume 7

7.2 Incomplete Data 7

7.3 Port Reuse 7

7.4 Network Optimization 8

8. TCP Processing Algorithm 8

9. TCP Processing Optimizations 12

10. Conclusions 12

11. References and Notes 13

List of Symbols, Abbreviations, and Acronyms 14

Distribution List 15

iv

List of Figures

Fig. 1 Generation of transport ID and transport hash6

Fig. 2 TCP module distribution of work ..9

Fig. 3 Time ranges for subsessions when TCP ports are reused10

Fig. 4 Using transmitted data segments and transmitted ACKs to determine
SoS of TCP payload data ...11

List of Tables

Table 1 CommsTcpSession table columns ...3

Table 2 CommsTcpFlows table columns ..4

Table 3 Transport columns included in CommsIp tables5

Table 4 Transport identifier components ..6

1

1. Introduction

The Army’s tactical radio networks carry critical data to command, control,
communications, and computers (C4) applications that deliver situational
awareness and other essential information to Warfighters. These networks operate
in challenged environments, without local infrastructure, and are often highly
constrained by size, weight, and power limitations. The applications that use these
networks must be able to handle lower bandwidths, higher packet drop rates, and a
lower overall quality of service compared with their enterprise counterparts. The
communication protocols that carry application traffic are typically designed for
higher quality network layers and therefore must be monitored and tuned to achieve
optimal performance and reliability. It is essential to evaluate the effectiveness of
the overall communications capability as new applications, network devices, and
protocols are developed and deployed.

The US Army Test and Evaluation Command conducts large-scale test events, such
as the Network Integration Evaluation, multiple times per year where tactical radio
networks are configured and deployed on experimental missions. Instrumentation
on network nodes continually collects test data, which includes packet capture,
device status via Simple Network Management Protocol,1 GPS position data, and
precise timing information. Data from this instrumentation are harvested and
gathered to conduct reduction and analysis of various performance metrics. An
important distinction of this test versus a typical enterprise network performance
test is that data are collected from a select subset of all network nodes, and the
aggregate of all collected information is necessary to produce the required analysis.
Since dropped packets, packet latency, and jitter are important factors in the
performance of the network applications, it is critical to have accurately time-
stamped packet observations at all network nodes using a global time
synchronization source.2 Test events generate large amounts of data that standard
computing platforms (e.g., high-end servers) cannot process fast enough to support
the limited time frame for analysts to produce reports. The need for high-
performance computing (HPC) to solve this problem has been well established and
documented in a US Army Research Laboratory report on data marshalling.3

2. Motivation and Desired Data Products

A large class of network applications (e.g., email, web) requires “reliable” transport
of data across a network. Reliability is defined as guaranteed and ordered delivery
of data from application to application. Internet Protocol (IP) does not guarantee
either of these capabilities, especially in a challenged tactical radio network

2

environment. Use of the Transmission Control Protocol (TCP) transport protocol is
the standard method of providing reliability to networked applications. Network
applications that do not require these reliability services typically use User
Datagram Protocol (UDP) for transport. UDP is handled by the capability presented
in this report, but due to its simplicity in this scope, the focus is on TCP.

TCP uses acknowledgment messages, sequence numbering of data bytes, and data
caching to achieve reliability and ordering. If IP packets are dropped, a TCP
implementation will resend application data that it has cached without any action
on the part of the application code. This caching consumes valuable memory
resources on both the transmitting and receiving network nodes and must be
carefully optimized based on the performance of the IP layer. Using memory and
available bandwidth efficiently is the key factor in TCP’s performance. TCP
performs best in an environment with a low round-trip time and a low drop rate.4
Neither of these is typical in a tactical radio environment.

To evaluate the efficiency of C4 applications that require reliable transport services,
careful examination of TCP protocol performance is necessary. Data collected
during test events includes IP packet observations, which are correlated and
matched prior to TCP analysis. The CommsIP table5 is generated from raw data
and contains a summary of all IP packets that traverse the tactical network including
their sending and receiving times at specific observation points. This table is critical
to TCP analysis and its summary format serves to reduce the amount of data read
in for analysis instead of reading and parsing entire packets. There are 2 types of
data products generated for TCP analysis: a CommsTcpSession table and a
CommsTcpFlow table. The layout and definitions in these tables were designed by
the Test and Evaluation community.6

3. TCP Sessions

The CommsTcpSession table (Table 1) presents the TCP session as it is observed
at a single point on the network. Therefore, a single TCP session will be represented
in this table for each observation point along the path between end points. While
there are typically 2 observation points (one at the “initiator” side and one at the
“peer” side), there are instances where packets transit one or more intermediate
observation points, thus resulting in one or 2 extra TCP session table entries per
additional observation point. The information collected in the CommsTcpSession
table identifies the endpoints of the session (IP address and TCP port number of
initiator and peer) and byte counts of the data transferred between endpoints.

3

Table 1 CommsTcpSession table columns

Column Name Description
cts_id Integer index of row
cts_deid Device (instrument) Identifier where observation took place
cts_collpt Collection point or logical observation point on the network

Mac8 Medium Access Control (Mac) (Ethernet) address observed as
destination for outgoing packets

subsessionid8 Zero-based index of session identifier if endpoints are re-used at a later
time

cts_iip IP Address of TCP session initiator
cts_iport TCP port number of TCP session initiator
cts_iinitseqnum Initial sequence number of TCP session initiator
cts_pip IP Address of the TCP session “peer” (listener, or server)
cts_pport TCP port of TCP session peer
cts_pinitseqnum Initial sequence number of TCP session peer
cts_dscp Differentiated Services Code Point from IPv4 Type-of-Service field

cts_establishedstate

Enumeration of the state of session establishment (e.g., only initial
synchronize (SYN) observed, only SYN and synchronize and
acknowledge (SYN-ACK) observed, full 3-way handshake observed,
session observed in already open state)

cts_establishtime Time to complete 3-way handshake

cts_endstate Enumeration of session end state (e.g. FIN or RST flags seen from
initiator and/or peer)

cts_sessionstarttime Absolute time of first packet observed for this session
cts_sessionendtime Absolute time of last packet observed for this session

cts_appbytesitop Total number of application bytes sent (TCP payload data) from initiator
to peer. This does not include retransmissions.

cts_appbytesptoi Total number of application bytes sent (TCP payload data) from peer to
initiator. This does not include retransmissions.

cts_actualbytesitop Total number of application bytes sent (TCP payload data) from initiator
to peer. This includes application data sent in retransmissions.

cts_actualbytes_ptoi Total number of application bytes sent (TCP payload data) from peer to
initiator. This includes application data sent in retransmissions.

cts_totalbytesitop Total number of IP payload bytes from initiator to peer. This includes
TCP headers and options from all packets including retransmissions.

cts_totalbytesptoi Total number of IP payload bytes from peer to initiator. This includes
TCP headers and options from all packets including retransmissions.

cts_outeripsrc
If packet is tunneled (e.g. GRE), this is the source IP address in the outer
IP packet header. It is determined once per session and represents the
first observation of a tunneled packet.

cts_outeripdst
If packet is tunneled, this is the destination IP address in the outer IP
packet header. It is determined once per session and represents the first
observation of a tunneled packet.

cts_qalimiteduseid
For quality assurance purposes, this entry may not be suitable for all
types of analysis. Possibly due to known instrumentation malfunctions
during this session or other network issues.

cts_qareasoncode A code specifying the reason for any limited use of this entry. Only valid
if LimitedUse field is set.

cts_daglimiteduseid Reserved for DAG (Data Authentication Group) use
cts_dagreasoncode Reserved for DAG use
numpktsinit8 Number of IP packets sent from TCP Initiator address for this session.
numpktsdst8 Number of IP packets sent from TCP Peer address for this session.

4

There are 3 different types of byte counts in the table per session. AppBytes
represents the amount of application layer data sent or received by the application,
which is the byte count of the payload from the TCP packet. This does not include
any TCP headers or payload data that was retransmitted due to packet drops.
ActualBytes is the actual count of TCP payload bytes including re-transmissions.
The ratio of AppBytes and ActualBytes gives a measure of efficiency with respect
to dropped packets on the network. The third byte count adds in all the overhead of
the TCP protocol itself, counting all the bytes of the TCP header, TCP options, and
retransmissions. It is effectively the byte count of the IP payloads for the TCP
session. Each of these byte counts are recorded for each direction: Initiator-to-Peer
and Peer-to-Initiator.

4. TCP Flows

The CommsTcpFlow table (Table 2) focuses on Speed of Service (SoS), or latency,
of application data from sender to receiver. This table lists the latency for each
segment of a TCP session recorded in the CommsTcpSession table. Entries in the
CommsTcpFlow table reference CommsTcpSession table records by their unique
identifiers. Each entry in the table includes a starting index and length (in bytes)
within the overall sequence number space of the session and the total time it took
for that segment to get from one observation point to the next. If a packet is dropped
in transit, this time should represent the time the data bytes were eventually
received (receipt of retransmission) minus the time it was first transmitted. The
number of application bytes represented by each row is arbitrary and depends solely
on how many bytes have the same SoS.

Table 2 CommsTcpFlows table columns

Column
Name Description

ctf_id Index into table
ctf_ctsid Reference to CommsTcpSession table entry observation at transmitting

endpoint
ctf_seqnum The sequence number in the TCP session for the starting byte of this segment
ctf_chunksize The number of application-layer bytes in this segment having the same SoS
ctf_senddate Time of first observation of these application-layer bytes being transmitted
ctf_latency The SoS for this segment of TCP data
ctf_source ‘I’ or ‘P’: Representing whether the transmitter was the TCP initiator or peer

5

5. UDP

Applications that do not require reliable delivery of application data typically use
UDP (e.g., Voice over IP audio traffic, certain variable message format messages).
The reporting of UDP packets is done with 2 tables: CommsUdpUnicast and
CommsUdpMulticast. There is no processing or translation necessary between the
data source (CommsIP) and these output tables. Creation of these tables is a trivial
copy after sorting by multicast or unicast destination address. The rest of this report
will focus solely on TCP processing.

6. Identification and Partitioning of TCP Packets for Processing

The TCP processing module gets all of its input from the CommsIP table. The
entries in the CommsIP table are based on matching observations of an IP packet
at a transmitting side and a receiving side. Within the scope of the processing
framework, it was decided to record some TCP information in the CommsIP table
because the CommsIP module already reads the packet data into memory and
parses it. Without this step in the CommsIP module, TCP processing would have
to re-read the raw data and parse packets again, resulting in significant replication
of input/output (I/O) operations. The TCP layer information shown in Table 3 is
stored in the CommsIP table for use in the TCP analysis. The TransportID or
“txp_id” value is a 13-byte string comprised of the concatenation of the IP header
fields identified in Table 4. This value is the primary identifier used to distinguish
TCP sessions from each other.

Table 3 Transport columns included in CommsIp tables

Column
Name Description

txp_id 13-byte transport identifier string
txp_hash Hash of “normalized” transport identifier
txp_xport TCP/UDP port of packet transmitter
txp_rport TCP/UDP port of packet receiver
txp_istcp Boolean: True if packet is TCP, false

otherwise
tcp_tcp_seq The sequence number from the TCP

header (undefined if not TCP)
txp_tcp_ack The acknowledgement number from the

TCP header (undefined if not TCP)
txp_datalen The total size of the TCP/UDP payload
txp_tcp_flags The TCP flags field (undefined if not

TCP)

6

Table 4 Transport identifier components

IP Header
Field Length Description

1 byte IP Protocol identifier from IP header
4 bytes Source IPv4 address of packet
4 bytes Destination IPv4 address of packet
2 bytes Source port of packet
2 bytes Destination port of packet

An important consideration in the processing of large amounts of TCP sessions is
that the workload be distributed as evenly as possible over the set of processors
used to run the reduction software. Since it is essential to have the timing, size, and
sequence information for all packets in the session “for both directions”, we cannot
simply divide the workload by txp_id values. Therefore, a hash (txp_hash) is
computed over a “normalized” version of the TransportID such that packets going
in both directions will have the same TransportID and hash (Fig. 1). The
normalization process organizes the source and destination IPv4 addresses and
ports in the TransportID based on a string comparison of the IPv4 addresses.

Fig. 1 Generation of transport ID and transport hash

Using just the normalized TransportID for distributing workloads would likely
result in an uneven distribution of sessions across processors. This is due to the fact
that IP addresses and ports used in most networks are organized into a small set of
common subnets and application ports. Instead, a hash of the TransportID is used
for distribution of workload. By using the hash of the normalized value,
TransportIDs that have only a small difference (e.g., only last octet of source IP is
different) will have hashes that are very dissimilar. Assigning processors each a
range of txp_hash values to work on results in an even distribution of sessions and
keeps both directions of the session together. This approach is a “best effort” at
distributing processing load, although may not be optimal. While each processor

7

may get a roughly equal number of TCP sessions to process, the computational
workload depends more on the number of packet records to process. TCP sessions
with high packet counts upset this balance and are handled with another
optimization, which is discussed later.

7. TCP Processing Considerations

7.1 Data Volume

The amount of TCP data in a test can be quite large, and it is only expected to grow
in future testing. An HPC compute node has finite memory and no disk space for
swap. An out of memory error will crash the node or processes will be killed before
the physical memory limit is reached. Writing out intermediate files, which are then
read multiple times, can be a significant bottleneck, but random-access memory
considerations are the primary factor in how data flows in the TCP processing
module. A particular worker process is given a set of TCP sessions to analyze, and
it must pick out all relevant packet records from the set of all IP packet records
(CommsIP table). This set of TCP packets is written to a temporary file specific to
the worker process and used for further processing. It is not safe to load all packet
records from all of a worker’s TCP sessions at once.

7.2 Incomplete Data

Network data collection devices are subject to errors and congestion just as network
devices are. It is understood that any packets of a TCP session may be present but
not observed at a particular observation point. A packet dropped by the network
may be indistinguishable from a packet dropped by the instrumentation. Therefore,
it is not always possible to see the same TCP payload at each end point to compare
transmitted bytes and received bytes. Our approach is designed to handle missing
packets and give the most complete picture possible of the transport layer
performance.

7.3 Port Reuse

A typical run of the TCP analysis code will process packets that were collected over
a period of 8 or more hours. It is entirely possible that TCP endpoint pairs (IP and
port sources and destinations) will be reused during that time period. Consideration
must be given to separate these sessions in time.

8

7.4 Network Optimization

Since tactical networks often suffer from large round-trip times and packet loss,
special hardware might be deployed to minimize the impact these effects have on
the performance of TCP. A Performance-Enhancing Proxy (PEP) may be used that
effectively “intercepts” a TCP session and relays the application-layer traffic in a
more optimal TCP configuration (e.g., larger window sizes). A matched PEP device
close to the other endpoint also relays in a similar fashion. When operating with
these devices, a single TCP session observed at 2 points on the network will have
different initial sequence numbers for the session and TCP segment sizes may have
changed en route. It is therefore important to consider “relative sequence numbers”
when comparing observations at initiator and peer sides of the session. If the 3-way
TCP handshake8 is not observed at one endpoint (instrumentation was not
collecting, or dropped packets), it may be impossible to determine speed of service
for the segments of the session.

8. TCP Processing Algorithm

The TCP reduction module is started within the context of the HPC reduction
framework.9 The module depends on output from a completed run of the CommsIP5
module. Given the set of files containing the CommsIP table, it selects a number of
worker tasks to spawn based on the number of message passing interface ranks in
the current HPC job, rounded up to the nearest power of 2. Rounding to a power of
2 simplifies the selection of a txp_hash range to bit-mask and compare rather than
a range or division operation.10 Each task is therefore assigned a subset of the
txp_hash value space to work on (Fig. 2).

9

Fig. 2 TCP module distribution of work

Each task goes through all CommsIP files and selects packet records that are
assigned to it. Where N is the number of tasks, the n-th task selects all txp_hash
values where the last 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑁𝑁) bits of the txp_hash value are equal to n. It copies
these packets into a new file (called “iter1file”) for subsequent processing. While
this extra I/O takes time, it is critical to gather all required packets while not
exceeding the memory limits of the computing node. This step results in a single
file containing all packet records for all sessions that the task will process.
Searching this file for packets from each TCP session it processes is much more
efficient than searching the entire space of all CommsIP files.

A first pass through the iter1file is made to get a list of all txp_hash values and the
TransportID values for each of them. Ideally, there are 2 TransportIDs for each
hash. If there is only one, then one direction of the TCP session was not observed.
If there are more than 2, a hash collision has occurred and it is handled by matching
the TransportIDs themselves. Further processing considers one txp_hash value or a
single pair of related TransportIDs at a time.

The iter1file is searched for all TCP SYN and SYN-ACK8 packets from the pair of
TransportIDs. This step results in finding the set TCP establishment handshakes
and their associated initial sequence numbers from the session initiator (Fig. 3).
This serves to identify the start time of each TCP session that uses the same IP and
port endpoints (hereafter called “subsessions”). The results of this step are recorded
for each observation point, as sequence numbers may have changed along the path

10

by a PEP. The goal of this step is to discover the number of subsessions and the
individual time frames of each subsession so that that all other packets may be
grouped and processed appropriately.

Fig. 3 Time ranges for subsessions when TCP ports are reused

Another pass is made through the iter1file, finding all packets with the TransportID
being processed. This time, each packet is added to a subsession tracker and is
identified as either a transmitted or received packet at a particular observation point.
Each packet added updates, counters, status flags, and a list of data segments
(sequence number, data length, time) and ACKs (ACK number, time). A single
packet record from the iter1file is usually added as both a transmitted packet and a
received packet at their respective observation points. Each subsession object tries
to identify the packet flow as being the initiator or peer of the TCP session. This is
done based on the observation of SYN or SYN-ACK packets in the flow.

The next step is to pair appropriate transmit and receive subsession objects at each
observation point. In the ideal case, there is exactly one transmitted subsession and
one received subsession and one of these has been identified as the initiator side
and the other as the peer side. A CommsTcpSession record is created with the
observation point and session statistics. The app_bytes fields (cts_appbytesitop and
cts_appbytesptoi) are populated by going through the segment list and ignoring
bytes that had previously been sent based on sequence numbers and lengths. If there
are not exactly one transmitted and one received subsessions, then initial sequence
numbers are used in an attempt to match appropriate observed flows. Since this
considers only one observation point, the effects of a PEP and nonmatching
sequence numbers are not an issue.

The SoS calculation is made by recording the time of first transmission of a segment
(sequence number and data length) and the time of first acknowledgment of that
segment (Fig. 4). Previous approaches reconstructed the payload data into 750-byte
“chunks” and compared the time sent versus received. A per-segment approach
gives a more granular result and handles unobserved packets by either showing no
SoS, or representing a slightly longer SoS value. For example, if 2 TCP segments
are transmitted representing 100 bytes each, there may have been a single ACK

11

representing all 200 bytes, or 2 separate ACKs, representing each segment
independently. These 2 scenarios are indistinguishable if the first independent ACK
is not recorded.

Fig. 4 Using transmitted data segments and transmitted ACKs to determine SoS of TCP
payload data

All trackers for tramsmitted subsessions, across all observation points, that were
identified are gathered and paired for the SoS analysis. The first grouping is done
temporally, looking for time overlap. Then initiator and peer subsessions are
separated such that they can be paired together. If there are more than one set of
initiators and peers in a subsession, initiators and peers from the same observation
point are not paired with each other. This handles the case where packets from point
“A” to point “C” are routed through point “B”. This case is recorded as 2 separate
speeds of service records between points “A” and “B” and between points “B” and
“C”.

Considering a flow of traffic from a TCP initiator to a TCP peer, the transmitted
data segments from the initiator’s observation point are compared against the
transmitted ACKs from the peer. During the processing of the TCP Session data,
the starting sequence number and length from each data segment are recorded.
Retransmitted bytes are not considered for this purpose since flow analysis is only
concerned with the earliest transmission of data. This is combined with a list of
ACKs and their earliest times. For example, if a TCP endpoint sends 3 packets with
the same ACK value, only the earliest observation is recorded. The resulting list of
data segments and ACKs are used to construct a list of latencies for segments of

12

the application layer data stream. Each data segment and its latency is recorded as
an entry in the CommsTcpFlows table.

9. TCP Processing Optimizations

Optimizations have been made to reduce memory requirements and I/O time in
processing sessions. In initial prototypes of the code, information from all packet
records for a session were loaded into memory and then sorted by both transmit and
receive time order into separate lists. This led to long sorting times and memory
exhaustion when processing large sessions. Now, a preindexed sorting mechanism
allows packet records to be loaded in both transmitted and received time order.
Retransmitted data segments and duplicate acknowledgements can then be ignored
since only the earliest observation is used.

The TCP sessions assigned to a worker are processed sequentially. During this time,
each packet record from the session must be read from the iter1file. As the number
of TCP sessions assigned to a worker increases, so does the number of passes
through the iter1file. A bottleneck appeared in TCP sessions with extremely large
packet counts, resulting in very long read times for ALL sessions handled by that
worker. To alleviate this, smaller TCP sessions (ones with fewer packets) are
copied out to another file. While this requires another round of I/O, it results in
many passes through a smaller file plus a small number of passes through the
original large file. In some cases, this optimization resulted in a 100× speedup for
workers.

10. Conclusions

The TCP processing module developed for HPC has been used during several test
events over the course of one and a half years. It has evolved as requirements
change and optimizations are discovered. Large-scale tests can process on the order
of one million TCP sessions in one to 3 h, depending mostly on the distribution of
packets among the sessions. The types of analysis that are done are unique; they
utilize observations from both endpoints of the session and compute speed of
service based on the time that data is transmitted from the sender to the time an
acknowledgement is sent by the receiver. While this module was designed and built
for C4 analysis of test events, it could easily be adapted for enterprise or wide-area
network analysis using appropriate data collection tools.

13

11. References and Notes

1. Simple Network Management Protocol, which is primarily used to query
systems under test for status information.

2. Panneton B, Adametz J, Franssen J. High-bandwidth tactical-network data
analysis in a high-performance-computing (HPC)_environment: time tagging
the data. Aberdeen Proving Ground (MD): Army Research Laboratory (US);
2015 Sep. Report No.: ARL-CR-0778.

3. Renard K, Rivera JD, Adametz J, Franssen J. High-bandwidth tactical-network
data analysis in a high-performance-computing (HPC) environment: data
marshalling. Aberdeen Proving Ground (MD): Army Research Laboratory
(US); 2015 Sep. Report No.: ARL-TR-7410.

4. Huston, G. TCP performance. The Internet Protocol Journal. 2000:3(2):2–24.

5. Panneton B, Adametz J. High-bandwidth tactical network data analysis in a
high-performance-computing (HPC) environment: packet-level analysis.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep.
Report No.: ARL-CR-0779.

6. Adametz J. Army Test Center, Analysis. C4 data model description document
1.8.13. Aberdeen Proving Ground (MD): Army Research Laboratory (US);
Aberdeen Test Center; not yet published.

7. These fields are present in the working data store in the HPC processing
modules, but they are not exported to the final C4 Data Model.

8. Postel J. Transmission control protocol. 1981 Sep. [accessed 2014 Jan 1].
http://www.rfc-editor.org/info/rfc793.

9. Panneton B, Adametz J. High-bandwidth tacticalnetwork data analysis in a
high-performance-computing (HPC) environment: HPC data reduction
framework. Aberdeen Proving Ground (MD): Army Research Laboratory
(US); 2015 Sep. Report No.: ARL-CR-0777.

10. Modulo operation chosen to make PyTable “where” statement query more
efficient in selecting values.

14

List of Symbols, Abbreviations, and Acronyms

C4 command, control, communications, and computers

DAG Data Authentication Group

HPC high-performance computing

I/O input/output

IP Internet Protocol

PEP Performance-Enhancing Proxy

SoS Speed of Service

SYN synchronize

SYN-ACK synchronize and acknowledge

TCP Transmission Control Protocol

UDP User Datagram Protocol

15

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL CIH C
 K RENARD

 16

INTENTIONALLY LEFT BLANK.

